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ABSTRACT

This study introduces object detection within electro-optical (EO) systems utilizing snapshot compressive imag-
ing (SCI). Traditional EO systems often suffer from extensive processing time and high computational demands
due to the sequential processes of capture, compression, reconstruction, and detection. To address these chal-
lenges, our research leverages SCI integrated with artificial intelligence (AI) to streamline the detection process
directly from compressed optical measurements, thereby omitting conventional intermediate steps. This method-
ology significantly reduces time, storage, and computational overhead, while simultaneously enhancing accuracy
by exploiting motion-encoded information inherent in the compressed data. By satisfying stringent size, weight,
and power (SWaP) requirements, our method holds promise for a variety of applications including autonomous
driving, environmental monitoring, and public security. This paper represents not only a significant advancement
in computational imaging, proposing a cost-effective, but also optimized solution suitable for a spectrum of EO
systems.
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1. INTRODUCTION

In the evolving landscape of electro-optical (EO) systems,1 snapshot compressive imaging (SCI)2 integrates
compressive sensing with conventional imaging techniques to optimize optical signal capture. This integration
aims to address the growing commercial demands for reducing costs and expediting development timelines. While
SCI has advanced significantly, its potential for synergizing with artificial intelligence (AI) for tasks like object
detection3 in a variaty applications has been underexplored.4

Object detection in EO systems5 is crucial for applications that require rapid responses under diverse and
complex conditions, such as modern operations and civilian safety. Traditional imaging processes involve multiple
stages: capture,6 compression,7 reconstruction,8 and detection,9 each adding to the time and computational
overhead. The challenge lies in enhancing these systems to meet stringent size, weight, and power (SWaP)
requirements while maintaining or improving detection performance in real-time scenarios.

Previously, approaches to improving object detection in EO systems primarily relied on separately optimizing
individual stages of the imaging process. However, these methods often resulted in increased computational
costs and extended processing times, which are not feasible for real-time applications.10 Moreover, traditional
methods typically do not utilize the motion-encoded information available in compressed measurements, limiting
their effectiveness in dynamic environments.

Our research introduces a transformative AI-driven method for direct object detection from compressed
optical measurements, tailored for modern EO systems. By leveraging SCI technology and eliminating the need
for intermediate steps between capture and detection, our approach significantly reduces time, storage, and
computational demands. Additionally, it enhances accuracy by incorporating motion information present in the
compressed data. The efficacy of our method has been demonstrated by experiments on the dataset, indicating
substantial improvements in real-time EO applications, including UAV and drone-operated reconnaissance and
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Figure 1. Object detection in EO systems with SCI boosts applications in a variety of scenarios including security (e.g.,
surveillance system and smart city), transportation (e.g., flying position control and automotive vehicles), healthcare (e.g.,
real-time patient monitoring and medical diagnosis) and etc

damage assessment. This pioneering approach not only meets the dual challenges of operational and commercial
demands but also extends potential applications to fields like autonomous driving, environmental monitoring,
and public security,11 as Figure 1 shows.

2. METHODS

Our approach harnesses the potential of SCI to enhance object detection in electro-optical systems. This section
delineates our methodological framework, emphasizing the optimization of mask patterns12 and compression
rates13 to refine both the quality of imaging results and the efficacy of subsequent object detection tasks.

The core of our method involves adapting the mask patterns12 and compression rate13 dynamically, a depar-
ture from the traditional fixed or random settings utilized in prior compressive imaging studies. The adaptability
is crucial for tailoring the imaging process to specific operational requirements, balancing between accuracy and
efficiency of on-device processing.

For a practical understanding, we consider the scenario of video snapshot compressive imaging. As illustrated
in Figure 2, high-speed frames from a video are captured at a rate exceeding the camera’s typical capture
speed. These frames undergo modulation using distinct mask patterns before being compressed into a single
measurement output. Formally, suppose Cr denotes the number of video frames involved, with each frame
Xi ∈ Rw×h,∀i = 1, . . . , Cr, where w and h are the frame’s width and height, respectively. Each frame Xi is
modulated by a unique mask Mi ∈ Rw×h,∀i = 1, . . . , Cr. The cumulative effect of these modulated frames
is integrated within the camera’s exposure time to produce a singular compressed measurement Y ∈ Rw×h,
represented mathematically as:14

Y =

Cr∑
i=1

Mi ⊙Xi +E, (1)

where ⊙ signifies the element-wise product and E represents the inherent measurement noise.

Figure 3 underscores the impact of varying mask patterns12 and compression rates13 on the resultant measure-
ment quality and volume, which are critical for the subsequent processing and transmission phases. To optimize
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Figure 2. The pipeline of video compressive imaging, where ⊙ denotes the element-wise product, Cr is the compression
rate.
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Figure 3. The different measurements (i.e., optical-domain compressed videos) under different compression rate settings,
using the snapshot compressive imaging technique.
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Figure 4. The decoding process of snapshot compressive imaging. The measurement captured by the snapshot compressive
imaging technique along with the masks are input to recover the high-dimensional data using algorithms.15–21

these parameters, we have developed algorithms that adjust the mask patterns12 and compression rates13 in
real-time based on feedback from the edge server and specific application scenarios. This adaptability allows for
a seamless balance between data quality and operational efficiency.

In this study, rather than reconstructing the high-dimensional optical signal as depicted in Figure 4 tradition-
ally required for object detection, our approach processes algorithms directly on the compressed measurements.
This method not only conserves computational resources but also shortens the response time, crucial for real-time
applications. The capability to perform direct object detection on compressed measurements is demonstrated in
Section 3, highlighting the potential for efficient and accurate detection in resource-constrained environments.

3. RESULTS

Our experiments were conducted using the Vimeo-90K22 dataset, a comprehensive high-quality video dataset
designed for lower-level video processing tasks. Each video was compressed with a compression ratio Cr = 8
to generate optical compressed measurements. For object detection, we employed various configurations of the
YOLO23 model to benchmark our modified approach against traditional methods.

We implemented four different experimental setups: YOLO tested on the original uncompressed video, YOLO
on the compressed and subsequently reconstructed video, YOLO directly on the compressed measurements as a
baseline, and our optimized YOLO on the compressed measurements.

From the results depicted in Figure 5, the YOLO model on the original video detected a car with a confidence
score of 0.96. However, on the reconstructed video, the same model misidentified the car as a truck. The baseline
method, testing YOLO directly on compressed measurements, detected the car but with a reduced confidence
of 0.92. Our optimized YOLO model on the compressed measurements not only maintained a high confidence
score of 0.95 in detecting the car but also uniquely identified a potted plant, which was not detected by any
other methods. This additional detection likely benefits from the rich temporal information embedded in the
compressed optical measurements.

Figure 6 further illustrates our method’s superiority. On the original video, the YOLO model detected a
person with a confidence of 0.89 but erroneously marked a frisbee. The reconstructed video saw an incorrect
detection of a skateboard, while the baseline detected the person with a lower confidence of 0.81. Our method,
however, achieved a confidence of 0.92 in detecting the person without any erroneous detections of unrelated ob-
jects. This improvement underscores the advantage of leveraging compressed optical measurement for enhancing
detection accuracy.

The experimental outcomes highlight several critical insights. While detection from original uncompressed
videos generally showed high accuracy, it demands substantial storage and computational resources and occasion-
ally provides inferior results compared to our method. Videos that were compressed and reconstructed typically
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Figure 5. Comparison of object detection results using different configurations of the YOLO model: Original uncompressed
video, compressed and reconstructed video, baseline compressed measurements, and optimized YOLO on compressed
measurements. The figure illustrates detection confidence scores across setups, highlighting the original video’s high
accuracy in detecting a car and the unique identification of a potted plant by our optimized model, which was not
detected in other configurations.

suffered from quality degradation, impacting the accuracy. The baseline method, without any adjustments,
performed suboptimally. In contrast, our approach not only efficiently utilizes the high-dimensional information
from compressed optical measurements but also incorporates AI-driven model adjustments to achieve the best
results with optimized resource usage. These findings underscore the potential of our method in real-time EO
applications, promising significant advancements in a variety of sectors.

4. CONCLUSION

In this study, we have demonstrated a transformative approach for optimizing object detection in EO systems
through the integration of SCI and AI. Our method addresses the critical challenge of balancing accuracy and
efficiency in EO systems by innovatively employing adaptive mask patterns12 and compression rates,13 tailored
specifically to the needs of real-time operational environments.

The utilization of SCI significantly enhances the efficiency of optical signal capture by compressing high-speed
video frames into single measurements without sacrificing the quality of the data required for accurate object
detection. By directly processing these compressed measurements for object detection, our approach circumvents
the traditional need for reconstructing high-dimensional optical signals, thereby reducing computational overhead
and storage requirements.

Our experiments, conducted on the Vimeo-90K dataset, illustrate the effectiveness of our method. The results
consistently show that our optimized model outperforms traditional object detection methods, not only in terms
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Figure 6. Comparison of object detection results using different configurations of the YOLO model. This figure showcases
the original video incorrectly identifying a frisbee, the reconstructed video misidentifying a skateboard, and the baseline’s
lower confidence in detecting a person. Our optimized method not only improves person detection confidence but also
eliminates erroneous detections, demonstrating the effectiveness of processing directly on compressed measurements.

of detection accuracy but also in the capability to detect additional objects that were previously undetected by
conventional systems. This is particularly evident in our model’s ability to accurately identify objects with high
confidence under varying operational conditions, which is critical for a variety of applications where rapid and
reliable object detection is paramount.

Furthermore, our approach’s capability to adjust dynamically to different operational scenarios through real-
time feedback enhances its applicability across a wide range of EO systems. This adaptability ensures that our
method can meet the stringent requirements of modern operations as well as emerging civilian technologies such
as autonomous driving and urban surveillance.

In conclusion, our research marks a significant advancement in the field of computational imaging within
EO systems. By integrating SCI with AI-driven object detection, we provide a robust framework that not only
meets but exceeds the current standards of operational efficiency and accuracy in real-time EO applications. We
believe that our findings will pave the way for further innovations in the field and contribute to the evolution of
smarter, more efficient EO systems.
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