iTB Scanner:

An intelligent microscope for TB detection

Researchers: Peraga Puangtong¹, Punnathorn Khunhon¹, Vichien Donram¹, Thanthun Sangphoo², Wansadaj Jaroenram³ 1 Princess Chulabhorn Science High School Chonburi, Thailand || 2 HRH Princess Maha Chakri Sirindhorn Memorial Hospital Siam Grand Palace, Rayong, Thailand 3 National Center for Genetic Engineering and Biotechnology, Pathum Thani, Thailand

Introduction

According to the World Health Organization (2023), an estimated global total of 10.8 million people fell ill with TB (equivalent to 134 cases per 100,000 population). It is nearly 4.9 million people cases in South-East Asia region. Unfortunately, estimated 700,000 of them died.

Acid-Fast Bacillus

This method of diagnosing tuberculosis, with the dye specific to the bacteria that causes tuberculosis, *M. tuberculosis* (MTB), is used from the patient's sputum. Then a physician will count the number of MTBs through a microscope. The final step takes about 15 to 30 minutes. The authors foresee that artificial intelligence can be applied to help physicians in diagnosing tuberculosis.

Dataset Sources		
Kaggle	ZNSM-iDB	
1257 images	695 images	
We collect ima	age datasets of	

we collect mage datasets of AFB microscopic sputum test.

Models			
Yolov5n	Yolov5s	Yolov5m	Yolov5l
Yolov5n6	Yolov5s6	Yolov5m6	Yolov5l6

Detector Evaluation

Valio	lation object loss
0.10 -	yolov5n
0.09 -	yolov5s
0.08 -	yolov5m
<u>8</u> 0.07 -	yolov5l yolov5l6
0.06 -	
0.05	
0.04 - 11 - Shan 2 - 0.01	x-thoreson and the second
0.03	

3 GOOD HEALTH AND WELL-BEING

- F.	Inspection ranking		9
	GeneXpert	Tuberculin skin	AFB sputum
	Most accurate	Least accurate	Moderately accurate
Contraction of the	Fastest time	Slowest time	Slow time
dist.	High cost	Low cost	Lowest cost

Objective

"We are making an AI to automatically detect MTB in given images from a microscope extension that captured images simultaneously in order to accelerate and provide convinience in the TB diagnosis process."

We labeled MTB and trained with the eight **yolov5** models.

Example of an AI detected image

0.02					
0	20	40	60	80	100
			ach		
		epo	bch		

Validation object loss The system can learn from a set of images.

Madal		Meas	sures	
woder	Sensitivity	Specificity	F1-score	Avg.time (ms)
olov5n	0.9743	<u>0.969</u>	0.9717	<u>10.6</u>
olov5s	0.9802	0.9647	<u>0.9727</u>	11.1
olov5m	0.9818	0.9572	0.9699	13.6
olov5l	0.9845	0.9364	0.9614	17
olov5n6	0.9898	0.9353	0.9636	13.7
olov5s6	0.9947	0.9064	0.9526	13.9
olov5m6	0.9952	0.9037	0.9517	18.7
olov5l6	<u>0.9952</u>	0.8775	0.9399	23.8

Results of the image classification Measured by the accuracy of the AI model in determining whether a given image is infected or not.

mAP on each epoch Large models were found to be more effective.

Model Measures for obj			ject detection		
Woder	Precision	Recall	mAP		
yolov5n	0.605	0.582	0.584		
yolov5s	0.624	0.595	0.569		
yolov5m	0.666	0.652	0.645		
yolov5l	0.615	0.551	0.537		
yolov5n6	0.673	0.761	0.72		
yolov5s6	0.738	0.732	0.73		
yolov5m6	0.708	0.735	0.699		
yolov5l6	0.714	0.748	0.718		

Object detection experiment Measured by the accuracy of the AI model in locating every MTB in the image.

IP & Current Status

1. Petty patent. Application Request No. 2403002061 2. Copyright No. 11291

HQ Camera captures high resolution images

2 Stepper motors and bevel gears control movement of stage in x-y plane

Watch real-time image from camera on the web

Live Camera	Move stage
START CAPTURING	MOVE UP
	MOVE RIGHT
Screen	MOVE LEFT
START SCREENING	MOVE DOWN

Control EVERYTHING with the web, providing convenience!

Applications

Accelerate and automate the TB diagnosis process. Or simple screen the sputum AFB slide

Adap with other microscopic organisms

Entire system evaluation

Highlights and Novelties

- Solution: A second seco
- **Easy integration:** does not require disassembly of microscope
- C Cost effective yet high performance: 100-500times cheaper
- C User friendly interface: control EVERTHING with the web

Sample slide

This picture shows the path way of the images capturing by iTB Scanner up to 300 high power field (x1500).

	Time taken
100 high power field	1m 40s
300 high power field	5m

Duration of the iTB Scanner scanning per round, including slide scanning and AI detection.

Various potential applications

Benefits

- Section 78 Giagnosis and treatment
- Setter access to TB screening in rural area
- **Reduce cost of TB screening**
- Reduce cost of importing tools and for TB diagnosis
- Reduce infection and death rates from TB

Facilitate learning and education of micro organisms and biology

Cost of production

- Raspberry pi 4 model B (35 USD)
- HQ Camera (65 USD)
- 2 motors and drivers (10 USD)
- TOTAL 110 USD

References

[1] Fu, H.-T., Tu, H.-Z., Lee, H.-S., Lin, Y. E., & Lin, C.-W. (2022). Evaluation of an Al-Based TB AFB Smear Screening System for Laboratory Diagnosis on Routine Practice. Sensors, 22(21), 8497. https://doi.org/10.3390/s22218497

[2] Ismail, N. A., Omar, S. V., Lewis, J. J., Dowdy, D. W., Dreyer, A. W., van der Meulen, H., Nconjana, G., Clark, D. A., & Churchyard, G. J. (2015). Performance of a Novel Algorithm Using Automated Digital Microscopy for Diagnosing Tuberculosis. American Journal of Respiratory and Critical Care Medicine, 191(12), 1443-1449. https://doi.org/10.1164/rccm.201502-0390oc

[3] Lewis, J. D., Chihota, V. N., Meulen, M. van der , Fourie, P. B., Fielding, K., Grant, A D., Dorman, S. E., & Churchyard, G. J. (2012). "Proof-Of-Concept" Evaluation of an Automated Sputum Smear Microscopy System for Tuberculosis Diagnosis. PLOS ONE, 7(11), e50173-e50173. https://doi.org/10.1371/journal.pone.0050173

[4] Panicker, R. O., Soman, B., Saini, G., & Rajan, J. (2015). A Review of Automatic Methods Based on Images. Journal of Medical Systems, 40(1). https://doi.org/ 10.1007/s10916-015 0388-y 15, Saif Uddin. (n.d.). Tuberculosis Image Dataset. Kaggle. Retrieved March 4, 2023 from https://www.kaggle.com/datasets/saife245/tuberculosis-image-datasets

[6] Serrao, M., Fernandes, G., Botinelly, L., Mauricio Morishi Ogusku, & Cicero. (2020). Automatic Bacillus Detection in Light Field Microscopy Images Using Convolutional Neural Networks and Mosaic Imaging Approach. https://doi.org/10.1109/embc44109.2020.9176105 [7] Shah, M. I., Mishra, S., Yadav, V. K., Chauhan, A., Sarkar, M., Sharma, S. K., & Rout, C. (n.d.). Tuberculosis Image. ZNSMiDB. Retrieved March 4, 2023 from http:// 14.139.240.55/znsm/