( Designing an Intelligent Self-Learning Robot for Adaptive Object Sorting )
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Scientific Background

« Reinforcement learning (RL) in robotic object sorting has progressed through
deep reinforcement learning (DRL) algorithms, such as DDPG and Deep Q-
Networks [2], applied in simulation platforms like VREP (CoppelliaSim),
OpenAl Gym, MuJoCo, and Gazebo

Design: A lightweight Pixel-wise Q-valued critic network with MobileNetV3-Small and a condensed FCN, trained using
stochastic gradient descent optimization scheme

Training: The agent was trained for 25,000 time step on dynamic environments with irregular and cubic blocks for object AppllCﬂthl‘lS

sorting

Procedures Generalization Insight: Model B demonstrated superior handling of
\ lex, unseen envir during testing, making it the preferred

choice for deployment

Adapting to dynamic real-world envir remains an ing research
challenge. Google's RL agent, Predictive Information-QT-Opt (PI-QT-Opt)
[3], achieved an 84% accuracy rate when deployed in a robotic waste-sorting
task

Testing: Models were tested on cubic blocks with different colors, using metrics: AE, GSR, PSR, and SSR

Comparison: The models were p: for generalization based on performance metrics j
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» Develop a PQCN using MobileNetV3-Small to reduce critic network complexity

by 40% and optimize sorting policies
» Explore two PQCN models for sorting cubic and irregular solid blocks in

dynamic environments Figure 5: Testing environment: generated frf)m. fixed olfscrva(ion scenes that shows 4 object blocks have unique sets of . Deployment: Integrate the agent with a real-time URS robot
» Identify the model with better generalization for complex object sorting during challenges: sparse, clutter, occluded, and variation of object colors
testing « Expansion: Extend the self-learning robot to industrial applications.

Table 1: PQCN-MobileNetV3-Small-FCN-1152-Model-A evaluated on fixed testing environments

Hypothesis s ~N

Explore two PQCN models for sorting regular and irregular blocks in dynamic
environments Performance Metrics Test 1 Test 2 Test 3 Mean [1] Yang, Q. F., Lian, L. W., & Zhao, J. H. (2023). Developing a gamified artificial intelligence
» Identify the model with better generalization for handling complex object Action Efficiency 79.25 3811 35.44 4508 + 20.11 educational robot to promote learning effectiveness and behavior in laboratory safety courses
eoge 5 = - for undergraduate students. i journal of i 'y in higher
variations Grasp Success Rate 78.66 64.21 39.84 3. 63.35 £ 14.94 20(1), 18
,18.
Place Success Rate 95.64 56.57 69.14 63.46 £ 22.77
Variables Sort Success Rate 91.12 45.16 75.00 60.07 + 16.66 121 Bao, J., Zhang, G., Peng, Y., Shao, Z., & Song, A. (2022). Learn multi-step object sorting
tasks through deep reinforcement learning. Robotica, 40(11), 3878-3894.
« Independent Variables: State observations and two DRL models for sorting Table 2: PQCN-MobileNetV3-Small-FCN-1152-Model-B evaluated on fixed testing environments 13] Herzog, A., Rao, K., Hausman, K., Lu, Y., Wohlhart, P., Yan, M., ... & Levine, S. (2023).
cubes and irregular blocks in four colors (red, blue, yellow, green) Performance Metrics Test 1 Test 2 Test 3 Test 4 Mean Deep rl at scale: Sorting waste in office buildings with a fleet of mobile manipulators. arXiv
Action Efficiency 2073 6318 4473 35.46 5340 £ 14.16 preprint arXiv:2305.03270.
« Dependent Variables: Performance metrics: AE, GSR, PSR, and SSR Gracp Stcesss Rate 26.19 60.61 1649 60.81 61.03 £ 1051
? U acp o, : st L : 14 Okafor, E., Oyedeji, M., & Alfarraj, M. (2024). Deep reinforcement learning with light-
Controlled Variables: d . . tal conditi Place Suc 83.14 85.27 72.52 3180 73.18413.26 weight vision model for sequential robotic object sorting. Journal of King Saud University-
‘ ontrofled Variables: dynamic erfwronmexf a coxf l tons . Sort Success 95.00 80.83 80.00 65.83 8041 + 10.32 Computer and Information Sciences, 36(1), 101896.
(sparse, cluttered, and stacked objects) during training and testing







