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Fig. 1: We propose a video generation framework named CUBE (Controllable, Unsupervised, Based on Events). Left: CUBE
is designed to generate videos conditioned on the edge information extracted from events using diffusion models. Right: CUBE
could synthesize various photo-realistic videos given different textual descriptions.

ABSTRACT
The advent of event cameras, with their unique asynchronous
sensing capabilities to capture the edge details of moving ob-
jects, has sparked new directions in video generation. So far,
the challenge of integrating event-based data for controllable
video generation remains largely unexplored. Addressing this
gap, we introduce a framework that leverages the edge in-
formation from events and combines it with textual descrip-
tions to synthesize videos without the requirement of exten-
sive training. The framework marks a pioneering venture into
event-based video generation using diffusion models. Com-
prehensive evaluations demonstrate the superior performance
of our framework compared to existing methods. Code is
available at: https://github.com/IndigoPurple/CUBE.
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1. INTRODUCTION

Event cameras, a groundbreaking type of asynchronous
sensor, function distinctly from conventional cameras that
capture images at consistent intervals. Drawing inspiration
from biological systems, these cameras autonomously cap-
ture incremental brightness changes at each pixel, known
as “events” [1]. The forefront of computational neuromor-
phic imaging (CNI) is focused on integrating the physical
imaging process with the event-driven modality to enhance
efficiency [2, 3, 4, 5, 6]. The capability of CNI to selectively
capture edge information of moving objects while reducing
bandwidth by discarding unnecessary visual data is notewor-
thy. CNI with event cameras are characterized by several
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advantages including high dynamic range (HDR), superior
temporal resolution, and low energy consumption. These
attributes render CNI highly effective for specific applica-
tions in HDR environments and high-speed motion capture
scenarios [7, 8, 9, 10].

However, the inherent sparsity and asynchronous nature
of event streams present a challenge in recording absolute
scene intensity, thus limiting their capacity for intuitive and
natural visualization of detailed scene information. Conse-
quently, events fall short in terms of perceptual realism. For-
tunately, the event stream encapsulates a condensed form of
visual data, furnishing essential elements for image or video
reconstruction [11, 12, 13, 14]. A common practice involves
reconstructing images from the event stream. Unfortunately,
existing methods either exhibit limited performance [15, 16,
17, 18, 19, 20] or require extensive ground truth frames for
neural network training [21, 22, 23, 24]. Recent studies [24]
have delved into the application of diffusion models [25, 26,
27, 28, 29] for image generation. Despite these advance-
ments, the reconstruction quality substantially lags behind the
standards of photo-realistic videos, particularly in synthesiz-
ing individual frames independently, and suffers in training
requirements. Additionally, the outcomes generated by pre-
vious methods lack controllability and cannot be guided by
high-level semantic information provided by users to create
specific scene content.

To address these issues, we introduce a video genera-
tion framework named CUBE (Controllable, Unsupervised,
Based on Events). Our approach is designed to generate
videos conditioned on both the edge information derived
from events and a given textual description. A key insight
of our work is that while events capture motion informa-
tion, we can artificially endow these moving objects with
specific appearances, textures, and scene backgrounds. As
illustrated in Fig. 1, instead of training from scratch, our
approach efficiently utilizes the generative capabilities of
pre-trained text-to-image models [30, 31], coupled with the
temporal consistency inherent in event streams, to produce
vivid videos.

Our main contributions are as follows:

• To the best of our knowledge, this is the first work for
event-based video reconstruction with diffusion model.

• We introduce a controllable, training-free framework
that combines an edge extraction module with an ex-
isting diffusion model. This combination facilitates the
reconstruction of video from events, leveraging on the
controllability of ControlVideo [32] while circumvent-
ing the extensive training requirements.

• Quantitative and qualitative evaluations demonstrate
the superior performance of our framework in video
quality, temporal consistency, and textual alignment
compared to existing methods.

2. RELATED WORK

2.1. Event-based Video Reconstruction

CNI encodes logarithmic intensity changes into a low-
redundancy event stream [33, 34, 35], enabling efficient
image or video reconstruction [11, 12, 13]. However, exist-
ing methods either perform poorly [15, 16, 17, 18, 19, 20] or
require auxiliary ground truth frames for neural network train-
ing [21, 22, 23, 24]. Recent research [24] uses the diffusion
model for event-based image generation but reconstruction
quality still falls short of photo-realistic videos and neces-
sitates training. Additionally, previous approach [24] lacks
control over generated results, complicating the guidance of
video generation based on semantic information.

2.2. Diffusion Model

Denoising diffusion probability models (DDPMs) [25, 26, 27,
28, 29, 36, 37] have emerged as popular research models in
computer vision, demonstrating impressive capabilities in im-
age generation. The latent diffusion model (LDM) [26] is an
efficient variant of diffusion models that applies the diffusion
process in the latent space instead of the image space. LDM
consists of two main components. First, it employs an en-
coder E to compress an image x into a latent code z = E(x)
and a decoder to reconstruct the image x ≈ D(z). Second, it
learns the distribution of image latent codes z0 ∼ pdata(z0)
using a DDPM formulation [25], which includes a forward
and a backward process. The forward process gradually adds
Gaussian noise at each timestep t to obtain zt:

q(zt|zt−1) = N (zt;
√
1− βtzt−1, βtI), (1)

where βt
T t = 1 is the scale of noises, and T denotes the num-

ber of diffusion timesteps. The backward denoising process
reverses the diffusion process to predict less noisy zt−1:

pθ(zt−1|zt) = N (zt−1;µθ(zt, t),Σθ(zt, t)). (2)

The µθ and Σθ are implemented using a denoising model
ϵθ with learnable parameters θ, which is trained with a simple
objective:

Lsimple := EE(z),ϵ∼N (0,1),t

[
||ϵ = ϵθ(z, t)||22

]
. (3)

During the generation of new samples, we start from
zT ∼ (0, 1) and employ DDPM sampling to predict zt−1 at
the previous timestep:

zt−1 =
√
αt−1z

′ +
√

1− αt−1 · ϵθ(zt, t),

z′ =
zt −

√
1− αtϵθ(zt, t)√

αt
,

(4)

where αt =
∏t

i=1(1 − βi). We use zt→0 to represent the
“predicted z0” at timestep t for simplicity. We employ Stable
Diffusion (SD) ϵθ(zt, t, τ) as our base model, which is an
instantiation of text-guided LDMs pre-trained on billions of
image-text pairs. Here, τ represents the text prompt.
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Fig. 2: Qualitative comparisons show CUBE outperforms others in video quality, temporal consistency, and textual alignment.

Method Structure Condition Frame Consistency (%) Prompt Consistency (%)

ControlNet Edge by Ours 84.52 21.47
ControlVideo Edge by CF 90.03 23.62
CUBE (Ours) Edge by Ours 92.27 27.74

Table 1: Quantitative comparisons of CUBE with other methods.

3. METHOD

ControlNet [38] and ControlVideo [32] have expanded the
scope of text-to-image and text-to-video generation to in-
clude varied input conditions like depth maps, poses, scrib-
bles, and edges. Despite these advancements, the incorpora-
tion of events as input conditions remains unexplored. Our
framework integrates an edge extraction module with Con-
trolVideo, enabling the reconstruction of videos from events.

3.1. Edge Extraction

The event stream obtained from an event camera can be de-
noted as ε = {ei}Ni=1, where N is the number of events. Here,
each event ei ∈ ε is represented by a tuple (xi, yi, si, pi),
where x and y represent the spatial position, s represents the
timestamp, and p = ±1 represents the polarity of the event.

To facilitate the integration of event stream ε with Con-
trolVideo, we design an edge extraction module to convert
events into edges. For synthesizing V video frames, ε is seg-
mented into V bins εj∈[1,V ], each holding n events. Then, the
edge map is extracted using the following equation:

Ij∈[1,V ](x, y) =
∑

i,ei∈εj

|pi|δ(x− xi)δ(y − yi)

N
, (5)

resulting in an intensity image I ∈ [0, 1]
H×W×1, with H and

W representing height and width, respectively. Here, δ(·) is
defined as the Kronecker delta function. This method ensures
that each edge in the video is directly traceable to the specific
events that occurred at that spatial location, capturing crucial

details of motion and change in the scene. Additionally, the
method’s reliance on the number of events rather than con-
tinuous intensity values allows for a more robust edge detec-
tion, particularly effective in dynamic and challenging light-
ing conditions.

3.2. Video Generation

Our approach to controllable event-based video generation
aims to produce a V -length video, leveraging both the ex-
tracted edge information I and a textual prompt τ . As de-
picted in Fig. 1, we introduce CUBE, a training-free frame-
work adapted from ControlVideo[32], augmented with our
edge extraction module for consistent and efficient video gen-
eration. In alignment with ControlVideo, we first estimate the
clean video latent zt→0 from zt using the formula:

zt→0 =
at −

√
1− αtϵθ(zt, t, I, τ)√

αt
. (6)

Following ControlVideo [32], after mapping zt→0 to an
RGB video xt→0 = D(zt→0), we refine it to a smoother
version x̃t→0 by employing the interleaved-frame technique
from RIFE [39]. This technique helps in maintaining tempo-
ral consistency by interpolating intermediate frames that re-
duce visual discontinuities between successive frames, thus
enhancing the fluidity of motion in the generated video. The
smoother video latent z̃t→0 = E(x̃t→0) is then used to de-
duce a less noisy latent zt−1, following the DDPM denoising
process as outlined in Eq. 4:

zt−1 =
√
αt−1zt→0 +

√
1− αt−1 · ϵθ(zt, t, I, τ). (7)
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Fig. 3: Qualitative comparisons show CUBE outperforms others in video quality, temporal consistency, and textual alignment.

Method Comparison Video Quality Temporal Consistency (%) Textual Alignment (%)

CUBE (Ours) vs. ControlNet 85.9 100 83.1
CUBE (Ours) vs. CF + ControlVideo 78.2 59.6 76.2

Table 2: User preference study shows the percentage of raters who favor the videos synthesized by CUBE over other method.

4. EXPERIMENT

4.1. Experimental Settings

Implementation Details. In our experiments, short videos
are synthesized with lengths of either 7 or 15 frames, whereas
longer videos can comprise approximately 100 frames, all
rendered at a spatial resolution of 256 × 448. We utilize
DDPM sampling techniques [29] with 50 timesteps, for this
process. Thanks to the efficient architecture of xFormers [40],
our CUBE framework efficiently generates videos of both 7-
frame and 100-frame lengths in about 0.5 and 5 minutes, re-
spectively, using a single NVIDIA RTX 4090.
Dataset. For a comprehensive evaluation of CUBE, we col-
lect 35 object-centric videos from the Vimeo90K dataset [41],
and V2E [42] is utilized to generate events. Then, we wrote
three textual prompts for each event, resulting in a dataset of
105 event-prompt pairs for testing.

Metrics. Following [43, 44, 32], we adopt CLIP [45] to eval-
uate the video quality from two perspectives: (a) frame con-
sistency, measured by the average cosine similarity across
consecutive frame pairs, and (b) prompt consistency, mea-
sured through the average cosine similarity between the input
prompt and all video frames.
Baselines. CUBE is benchmarked against two event-based
reconstruction methods, CF [46] and E2VID [15, 47], and
compared with recent generative methods, ControlNet [38]
and ControlVideo [32]. We adapted ControlNet and Con-
trolVideo to support event input, and details are in Sec. 4.3.

4.2. Qualitative and Quantitative Evaluations

Qualitative Comparisons. Figures 2, 3, 4, and 5 illus-
trate the visual comparisons of synthesized videos by various
methods. (a) As observed in Fig. 2, ControlNet lacks tem-
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Fig. 4: Qualitative comparisons show CUBE outperforms others in video quality, temporal consistency, and textual alignment.

poral consistency, while ControlVideo, although maintaining
temporal coherence, fails to generate a violin. (b) In Fig. 3,
ControlNet shows temporal inconsistency and also fails to
produce the correct color (green) in Frame #1 of the second
row, while ControlVideo generates no meaningful content. (c)
Fig. 4 shows unnatural image quality from ControlNet and
multiple issues with ControlVideo, including non-compliance
with the prompt (cartoon) in the first row, indiscernible im-
ages in the second row, and structural discrepancies with the
event data in the third row (differing facial orientations). (d)
Fig. 5 shows unnatural and inconsistent frame output from
ControlNet, with ControlVideo results not aligning with the
event data. In contrast, CUBE generates videos with better
video quality, temporal consistency and textual alignment.
Quantitative Comparisons. We also compare our CUBE
with other methods quantitatively on 105 video-prompt pairs.
From Table 1, our CUBE consistently outperforms the base-
lines in terms of frame and prompt consistency, aligning with
our qualitative findings. Despite utilizing the same edges,
ControlNet demonstrated worse frame consistency than ours.
User Study. To further validate our CUBE framework, we
conduct a user study. Participants are presented with visual-
izations of event streams, associated text prompts, and videos
synthesized by distinct methods, in a random order. They

judge the videos based on three criteria: (i) overall video qual-
ity, (ii) temporal consistency across all frames, and (iii) align-
ment between the text prompts and the synthesized videos, us-
ing an evaluation set of 105 event-prompt pairs assessed by 5
raters each. From Table 2, our generated videos are preferred
across all metrics. In contrast, ControlNet and ControlVideo
generally produced lower quality and less consistent videos.

4.3. Ablation Study

Effect of Edge Extraction Module. To demonstrate the ef-
fectiveness of the edge extraction module, we conduct a com-
parison with the variant of ControlVideo. For this variant,
frames reconstructed by CF are used as input edge conditions
for ControlVideo. However, as depicted in Figures 2, 3, 4,
and 5, our edge extraction module demonstrates superior in-
tegration with ControlVideo, resulting in improved outcomes.
Effect of Video Generation. The efficacy of our video gen-
eration process was evaluated against a variant of ControlNet.
It is evident from Figures 2, 3, 4, and 5 that ControlNet strug-
gles to maintain temporal consistency. This observation vali-
dates our choice of ControlVideo as the base model for video
generation as an effective strategy.
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Fig. 5: Qualitative comparisons show CUBE outperforms others in video quality, temporal consistency, and textual alignment.

5. DISCUSSION

The reliance on extracted edge maps may restrict capturing
subtle textures and complex patterns. To address this, we plan
to explore hybrid models that integrate edge and texture in-
formation, enhancing the visual fidelity of generated videos.
Furthermore, using pre-trained diffusion models without ex-
tensive diverse dataset training might limit adaptation to new
or out-of-distribution scenarios. Future work will consider
domain adaptation [48] and test-time tuning [49] strategies
to improve robustness. Additionally, while CUBE leverages
efficient architectures, it is not yet fully optimized to reduce
computational demands, further efforts will aim to reduce
processing times, paving the way for real-time deployment.

6. CONCLUSION

We introduce CUBE, a framework for controllable unsuper-
vised event-based video generation, which effectively bridges
the gap between event cameras and the need for perceptu-
ally realistic video synthesis. Combining event-derived edges
with textual descriptions, CUBE transcends the limitations of
existing methods, offering controllability and superior perfor-
mance without the requirement of extensive training.
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