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Abstract
The ability of snapshot compressive imaging (SCI) systems
to efficiently capture high-dimensional (HD) data has led to
an inverse problem, which consists of recovering the HD
signal from the compressed and noisy measurement. While
reconstruction algorithms grow fast to solve it with the re-
cent advances of deep learning, the fundamental issue of ac-
curate and stable recovery remains. To this end, we pro-
pose deep equilibrium models (DEQ) for video SCI, fusing
data-driven regularization and stable convergence in a the-
oretically sound manner. Each equilibrium model implicitly
learns a nonexpansive operator and analytically computes
the fixed point, thus enabling unlimited iterative steps and
infinite network depth with only a constant memory re-
quirement in training and testing. Specifically, we demon-
strate how DEQ can be applied to two existing models for
video SCI reconstruction: recurrent neural networks (RNN)
and Plug-and-Play (PnP) algorithms. On a variety of datasets
and real data, both quantitative and qualitative evaluations
of our results demonstrate the effectiveness and stability of
our proposed method. The code and models are available at:
https://github.com/IndigoPurple/DEQSCI

Introduction
Aiming at the efficient and effective acquisition of high-
dimensional (HD) visual signal, snapshot compressive
imaging (SCI) systems have benefited from the advent
of novel optical designs to sample the HD data as two-
dimensional (2D) measurements. Considering the video
SCI system, the 2D measurement of a video, i.e., a three-
dimensional (3D) data-cube leads to an inverse problem.
The goal of such an inverse problem is to recover a video
from a collection of noisy snapshots, which could be mod-
eled as (Yuan, Brady, and Katsaggelos 2021):

y = Φx+ e, (1)

where y ∈ Rn is the 2D measurement with n equaling the
number of each video frame’s pixels, Φ ∈ Rn×nB is the
sensing matrix, x ∈ RnB is the 3D data (by vectorizing
each frame and stacking them), and e is the measurement
noise; here B denotes that every B video frames are col-
lapsed into a single 2D measurement. Though algorithms
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Figure 1: Our proposed deep equilibrium models (DEQ) for
SCI can lead to stable recovery as K increases, where K
denotes the iteration number during the corresponding op-
timization progress. We test our model under two differ-
ent frameworks, i.e., RNN (Cheng et al. 2020) and PnP-
GAP (Yuan et al. 2020), the fidelity and stability of our
model can be obviously observed.

have been fully developed to reconstruct the video from its
snapshot measurement in recent years, the fundamental is-
sue remains: this inverse problem is inherently ill-posed,
which makes the recovery of the signal x inaccurate and un-
stable for noise-affected data y (Jalali and Yuan 2019).

The rapid advancement of deep learning and artificial in-
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telligence have empowered a new wave of revolutionary so-
lutions towards these previously intractable problems. For
instance, BIRNAT (Cheng et al. 2020) employed recurrent
neural networks (RNNs) to reconstruct the video frames in
a sequential manner and explore the temporal correlation
within the video SCI signal. Inspired by particular optimiza-
tion algorithms, GAP-net (Meng, Jalali, and Yuan 2020),
DUN-3DUnet (Wu, Zhang, and Mou 2021) designed deep
unfolding structures, which consist of a fixed number of ar-
chitecturally identical blocks. The heart of RNN and deep
unfolding are deep neural networks, which have posed new
challenges due to their ever-growing depth and huge training
memory occupation. To overcome these difficulties, inspired
by (Gomez et al. 2017), a recent work (RevSCI) (Cheng
et al. 2021) utilized reversible convolutional neural networks
to develop a memory-efficient structure. However, all of
these aforementioned algorithms inevitably suffer growing
memory occupation with increasing layer depth, and thus
models need to be painstakingly designed.

Inspired by the plug-and-play (PnP) frame-
work (Venkatakrishnan, Bouman, and Wohlberg 2013;
Sreehari et al. 2016) which has been proposed for inverse
problems with provable convergence (Chan, Wang, and
Elgendy 2017; Ryu et al. 2019), PnP-FFDNet (Yuan et al.
2020) and PnP-FastDVDNet (Yuan et al. 2021) bridged the
gap between deep learning and conventional optimization
algorithms with the plug-and-play (PnP) framework, utiliz-
ing a pre-trained denoiser as the proximal operator. While
enjoying the advantages of both data-driven regularization
and flexible iterative optimization steps, those algorithms
still have hyperparameters to be tuned. Nevertheless, an
accurate result must be guaranteed with a proper parameter
setting. Due to the intrinsic unstable characteristic of the
iterative recovery, even some complicated strategy needs
to be employed (Wei et al. 2020). As we illustrate in
Fig. 1 and Fig. 2, the hyperparameters are unavoidable
to be handcrafted to achieve satisfactory performance in
traditional algorithms.

An important and interesting research topic in deep learn-
ing is to train arbitrary deep networks, in which the deep
equilibrium models (DEQ) (Bai, Koltun, and Kolter 2020)
stands up as the leading method. A recent work (Gilton,
Ongie, and Willett 2021) leverages DEQ to solve the inverse
problems in imaging, which corresponds to the potentially
infinite number of iteration steps in the PnP scheme.

To accommodate the state-of-the-art SCI architectures
and to enable low-memory stable reconstruction, this pa-
per sets about utilizing DEQ for solving the inverse problem
of video SCI. Specifically, we applied DEQ to two existing
models for video SCI reconstruction: RNN and PnP. There-
fore, the former one is equivalent to an infinite-depth net-
work using only constant memory; the latter one is tuning-
free, and directly solves for the fixed point during the iter-
ative optimization process. On a variety of simulation and
real datasets, quantitative and qualitative evaluations demon-
strate the effectiveness of our proposed method. As shown in
Fig. 2, our reconstruction converges to stable results along
with the increasing iterations during optimization.

In a nutshell, we aim to address the following two chal-

Figure 2: The quantitative comparison of different frame-
works with or without our proposed DEQ for SCI. The con-
vergence trends of different algorithms demonstrate that our
model’s results can converge to a higher level.

lenges which the SCI reconstruction are facing while using
deep neural network and iterative optimization algorithms:
• How deep should the model be? Can it be infinite?
• Is there a tuning-free framework to be used? If yes, how

to use it for SCI reconstruction?
By employing the most recent development of DEQ, we
demonstrate that the answers to all the above questions are
positive. Our specific contributions are as follows:
1) We firstly propose deep equilibrium models for video

SCI, which fuses data-driven regularization and stable
convergence in a theoretically sound manner.

2) Each equilibrium model analytically computes the fixed
point, thus enabling unlimited iterative steps and infinite
network depth with only a constant memory require-
ment in training and testing.

3) We analyze convergence for each equilibrium model, to
ensure the implicit operators in our models are nonex-
pansive.

4) On a variety of simulations and real datasets, both quan-
titative and qualitative evaluations of our results demon-
strate the effectiveness and stability of our proposed
method.

Related Work
Snapshot Compressive Imaging
The underlying principle of SCI is to compress the 3D data
cube into a 2D measurement by hardware, and then recon-
struct the desired signal by algorithms. Considering video
SCI, it compresses the spatio-temporal data-cube across the
temporal dimension, and thus enables a low-speed camera
to capture high-speed scenes. For instance, Llull et al. (Llull
et al. 2013) proposed the coded aperture compressive tem-
poral imaging (CACTI) system, which decomposes the 3D
cube into its constituent 2D frames and imposes 2D masks
for modulation.

Given the masks and measurements, plenty of algorithms
including conventional optimization(Liu et al. 2018; Yang
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et al. 2015, 2014; Yuan 2016), end-to-end deep learn-
ing (Qiao et al. 2020; Zheng et al. 2021; Wang et al. 2022;
Cheng et al. 2022; Meng and Yuan 2021), deep unfold-
ing (Meng, Jalali, and Yuan 2020; Wu, Zhang, and Mou
2021) and plug-and-play (Yuan et al. 2020; Yuan et al. 2021;
Wu et al. 2022; Yang and Zhao 2022) are proposed for re-
construction. To solve the ill-posed problem in Eq. (1), ad-
ditional regularization is usually needed to ensure accurate
and stable recovery with respect to noise perturbation. To
this end, these algorithms obtain the estimated value x̂ of x
by solving the following problem:

x̂ = argmin
x

1

2
||y −Φx||22 +R(x), (2)

where ||y −Φx||22 is the fidelity term and R(x) is the regu-
larization term.

By introducing an auxiliary parameter v, the uncon-
strained optimization in Eq. (2) can be converted into:

(x,v) = argmin
x,v

1

2
||y − Φx||22 +R(v), s.t. x = v. (3)

Using the alternating direction method of multipliers
(ADMM) (Boyd et al. 2011) and introducing another param-
eter u, Eq. (3) could be divided into the following sequence
of sub-problems:

x(k+1) = argmin
x

1

2
∥y −Φx∥22 +

ρ

2
∥x− (v(k) − 1

ρ
u(k))∥22,

(4)

v(k+1) = argminv µR(v) + ρ
2 ||v − (x(k) + 1

ρu
(k))||22,

(5)

u(k+1) = u(k) + ρ(x(k+1) − v(k+1)), (6)

where the superscript k denotes the iteration number; ρ is the
penalty parameter and µ is the regularization weight. Since
Eq. (5) can be regarded as a denoising process of v, implic-
itly we have:

v(k+1) = D(k+1)(x(k+1) + 1
ρu

(k)), (7)

where D is a denoiser.
On the other hand, generalized alternating projection

(GAP) (Liao, Li, and Carin 2014) can be used as a (little bit)
lower computational workload algorithm with the following
two steps:

x(k+1) = v(k) +Φ⊤(ΦΦ⊤)−1(y −Φv(k)), (8)

v(k+1) = D(k+1)(x(k+1)). (9)

Eq. (8) can be solved efficiently due to the special structure
of Φ in SCI (Jalali and Yuan 2019).

Deep Unfolding
Inspired by optimization algorithms such as ADMM (Boyd
et al. 2011) and GAP (Liao, Li, and Carin 2014), deep un-
folding methods (Ma et al. 2019; Meng, Jalali, and Yuan
2020; Wu, Zhang, and Mou 2021; Yang, Zhang, and Yuan
2022) are proposed to solve inverse problems in SCI, which

consist of a fixed number of architecturally identical blocks.
Each of those blocks represents a single iterative step in con-
ventional optimization algorithms. Though deep unfolding
successfully assimilate the advantages of the iterative opti-
mization algorithms and could be trained in an end-to-end
manner, the fixed number of network blocks in deep unfold-
ing is needed to be kept small for two reasons: i) these sys-
tems should be concise to keep a high inference speed for
real-time reconstruction; ii) it is challenging to train deep
unfolding networks for numerous stages due to memory lim-
itations.

Plug-and-Play
The latest trend is to bridge the gap between deep learning
and optimization with the PnP framework. Yuan et al. (Yuan
et al. 2021) proposed PnP-ADMM framework and PnP-GAP
framework, using a pre-trained denoiser as the proximal op-
erator in Eq. (5) and Eq. (9), respectively. In contrast to deep
unfolding, PnP relieves itself from the limited memory by
integrating a flexible denoising module into the iterative op-
timization process. Nevertheless, it suffers manual param-
eter tuning in addition to the time-consuming reconstruc-
tion process. That is, its performance is highly sensitive to
the internal parameter selection, including but not limited to
the penalty parameter, the denoising level, and the terminal
step number. Moreover, the optimal parameter setting dif-
fers image-by-image, depending on the modulation process,
noise level, noise type, and the unknown image itself.

Memory-Efficient Deep Networks
Since the important factor that limits the development of
deep learning and deep unfolding for SCI is limited memory
on hardware devices used for training, to address this issue,
RevSCI (Cheng et al. 2021) developed a memory-efficient
network for large-scale video SCI. Using reversible neural
networks, where each layer’s input can be calculated from
the layer’s activation during back-propagation, which means
the activation during training is not needed to be stored. Nev-
ertheless, it still suffers growing memory occupation along
with the increasing depth of the network. In contrast, DEQ
reduces memory consumption to a constant (i.e., indepen-
dent of network depth) by directly differentiating through
the equilibrium point and thus circumvents the construction
and maintenance of layers. Moreover, DEQ can solve stable
estimation, easily extended to larger computing in the test
time, while reversible neural networks cannot.

Deep Equilibrium Models
Motivated by the surprisingly recent works (Bai, Kolter, and
Koltun 2018; Dehghani et al. 2018; Dabre and Fujita 2019)
that employ the same transformation in each layer and still
achieve competitive results with the state-of-the-art, Bai et
al. (Bai, Kolter, and Koltun 2019) proposed a new approach
to model this process and directly computed the fixed point.
To leverage ideas from DEQ, Gilton et al. (Gilton, Ongie,
and Willett 2021) proposed DEQ for inverse problems in
imaging, which corresponds to a potentially infinite number
of iteration steps in the PnP reconstruction scheme.
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Figure 3: Illustration of our proposed DEQ for SCI using
recurrent neural network (RNN), i.e., DE-RNN.

Method
Given measurement y ∈ Rn with compression rate B and
sensing matrix Φ ∈ Rn×nB as input, we consider an opti-
mization iteration or neural network as:

x(k+1) = fθ(x
(k);y,Φ), k = 0, 1, . . . ,∞, (10)

where θ denotes the weights of embedded neural networks;
x(k) ∈ RnB is the output of the kth iterative step or hid-
den layer, and x(0) = Φ⊤y; fθ(· ;y,Φ) is an iteration map
RnB → RnB towards a stable equilibrium:

lim
k→+∞

x(k) = lim
k→+∞

fθ(x
(k);y,Φ)

≡ x̂ = fθ(x̂;y,Φ), (11)

where x̂ ∈ RnB denotes the fixed point and reconstruction
result.

In this section, we first design different fθ for SCI, in
terms of the implicit infinite-depth RNN architecture and in-
finitely iterative PnP framework. Following (Gilton, Ongie,
and Willett 2021), for gradient calculation, we optimize the
network wights θ by approximating the inverse Jacobian.
Convergence for specific fθ designs is discussed.

Forward Pass
Unlike the conventional optimization method where the ter-
minal step number is manually chosen or a network where
the output is the activation from the limited layers, the re-
sult of DEQ is the equilibrium point itself. Therefore, the
forward evaluation could be any procedure that solves for
this equilibrium point. Considering SCI reconstruction, we
design novel iterative models that converge to equilibrium.

Recurrent Neural Networks To achieve integration of
DEQ and RNN for video SCI, we have:

x(k+1) = RNNθ(x
(k),y,Φ), (12)

where RNN(· ) is a trainable RNN network learning to it-
eratively reconstruct effective and stable data. As shown in
Fig 3, the corresponding iteration map is:

fθ(x;y,Φ) = RNNθ(x,y,Φ). (13)

Generalized Alternating Projection Regarding the op-
timization iterations in the GAP method, represented in
Eq. (8)-(9), we iteratively update x by:

x(k+1) = D(k+1)
θ

[
x(k) +Φ⊤(ΦΦ⊤)−1(y −Φx(k))

]
.

(14)

Therefore, as illustrated in Fig. 4, the iteration map is:

fθ(x;y,Φ) = Dθ(x+Φ⊤(ΦΦ⊤)−1(y −Φx)). (15)

Figure 4: Illustration of our proposed DEQ for SCI using
generalized alternating projection (GAP), i.e., DE-GAP.

Backward Pass
While previous work often utilizes Newton’s method to
achieve the equilibrium and then backpropagate through all
the Newton iterations, following (Gilton, Ongie, and Willett
2021), we alternatively adopt another method with high ef-
ficiency and constant memory requirement.

Loss Function To optimize network parameters θ,
stochastic gradient descent is used to minimize a loss func-
tion as follows:

θ∗ = argminθ
1
m

∑m
i=1 ℓ(fθ(x̂i;yi,Φi),x

⋆
i ), (16)

where m is the number of training samples; ℓ(·, ·) is a given
loss function, x⋆

i is the ground truth 3D data of the i-th train-
ing sample, yi is the paired measurement, Φi denotes the
sensing matrix, and fθ(x̂i;yi,Φi) denotes the reconstruc-
tion result given as the fixed point x̂ of the iteration map
fθ(· ;y,Φ), as derived from Eq. (11). The mean-squared er-
ror (MSE) loss is used for our video SCI reconstruction:

ℓ(x̂,x⋆) = 1
2 ||x̂− x⋆||22. (17)

Since the reconstruction result is a fixed point of the itera-
tion map fθ(· ;y,Φ), gradient calculation of this loss term
could be designed to avoid large memory demand. Follow-
ing (Gilton, Ongie, and Willett 2021), we calculate the gra-
dient of the loss term, which takes the network parameters θ
into consideration.

Gradient Calculation Following (Gilton, Ongie, and Wil-
lett 2021), we calculate the loss gradient. Let ℓ be an abbre-
viation of ℓ(x̂,x⋆) in Eq. (17), then the loss gradient is:

∂ℓ
∂θ =

(
∂x̂

∂θ

)⊤
∂ℓ

∂x̂
=

(
∂x̂

∂θ

)⊤

(x̂− x⋆), (18)

where ∂x̂
∂θ is the Jacobian of x̂ evaluated at θ, and ∂ℓ

∂x̂ is the
gradient of ℓ evaluated at x⋆.

Then to compute the Jacobian ∂x̂
∂θ , we recall the fixed

point equation x̂ = fθ(x̂;y,Φ) in Eq. (11). By implicitly
differentiating both sides of this fixed point equation, the Ja-
cobian ∂x̂

∂θ is solved as:

∂x̂
∂θ =

[
I − ∂fθ(x;y,Φ)

∂x

∣∣∣
x=x̂

]−1
∂fθ(x̂;y,Φ)

∂θ , (19)

which could be plugged into Eq. (18) and thus get:

∂ℓ
∂θ =

[
∂fθ(x̂;y,Φ)

∂θ

]⊤[
I − ∂fθ(x;y,Φ)

∂x

∣∣∣
x=x̂

]−⊤
(x̂− x⋆),

(20)

where −⊤ denotes the inversion followed by transpose. As
this method converted gradient calculation to the problem of
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calculating an inverse Jacobian-vector product, it avoids the
backpropagation through many iterations of fθ(x̂;y,Φ). To
approximate the inverse Jacobian-vector product, we define
the vector a(∞) as:

a(∞) =
[
I − ∂fθ(x;y,Φ)

∂x

∣∣∣
x=x̂

]−⊤
(x̂− x⋆). (21)

Following (Gilton, Ongie, and Willett 2021), it is noted that
a(∞) is a fixed point of the equation:

a(k+1) =
[

∂fθ(x;y,Φ)
∂x

∣∣∣
x=x̂

]−⊤
a(k) + (x̂− x⋆),

∀k = 0, 1, . . . ,∞.
(22)

Therefore, the same algorithm used to calculate the fixed
point x̂ could also be used to calculate a(∞) . The limit of
fixed-point iterations for solving Eq. (22) with initial iterate
a(0) = 0 is denoted equivalently to the Neumann series:

a(∞) =
∑∞

p=0

{[
∂fθ(x;y,Φ)

∂x

∣∣∣
x=x̂

]⊤}p

(x̂− x⋆). (23)

To quickly calculate the vector-Jacobian products in
Eq. (22) and Eq. (23), a lot of auto-differentiation tools (e.g.,
autograd packages in Pytorch(Paszke et al. 2019)) could be
utilized. After the accurate approximation of a(∞) is calcu-
lated, the gradient in Eq. (18) is given by:

∂ℓ
∂θ =

(
∂fθ(x̂;y,Φ)

∂θ

)⊤
a(∞). (24)

Convergence Analysis
Given the iteration map fθ(· ;y,Φ) : RnB → RnB , in
this section, we discuss conditions that guarantee the con-
vergence of the proposed deep equilibrium models x(k+1) =
fθ(x

(k);y,Φ) to a fixed-point x̂ as k → ∞.

Assumption 1 (Convergence of DE-RNN). For all x,x′ ∈
RnB , if there exists a constant 0 ≤ c < 1 satisfies that:

∥RNNθ(x,y,Φ)− RNNθ(x
′,y,Φ)∥ ≤ c∥x− x′∥,

(25)

then the DE-RNN iteration map fθ(x;y,Φ) is contractive.

Assumption 2 (Convergence of DE-GAP). For all x,x′ ∈
RnB , if there exists a ε > 0 such that the denoiser Dθ :
RnB → RnB satisfies:

∥(Dθ − I)(x)− (Dθ − I)(x′)∥ ≤ ε||x− x′||, (26)

where (Dθ − I)(x) := Dθ(x) − x, that is, we assume the
map Dθ − I is ε-Lipschitz, then the DE-GAP iteration map
fθ(·;y,Φ) defined in Eq. (15) satisfies:

∥fθ(x;y,Φ)− fθ(x
′;y,Φ)∥ ≤ η∥x− x′∥ (27)

for all x,x′ ∈ RnB . The coefficient η is less than 1, in which
case the DE-GAP iteration map fθ(x;y,Φ) is contractive.

Following (Gilton, Ongie, and Willett 2021), to
prove fθ(·;y,Φ) is contractive it suffices to show
||∂xfθ(x;y,Φ)|| < 1 for all x ∈ RnB , where || · ||

denotes the spectral norm, ∂xfθ(x;y,Φ) is the Jacobian of
fθ(x;y,Φ) with respect to x ∈ RnB given by:

∂xfθ(x;y,Φ) = ∂xDθ(x)(I−Φ⊤(ΦΦ⊤)−1Φ), (28)

where ∂xDθ ∈ RnB×nB is the Jacobian of Dθ : RnB →
RnB with respect to x ∈ RnB .

Finally, we derive (details can be found in (Zhao 2022) or
supplementary material):

||∂xfθ(x;y,Φ)|| ≤ (1 + ε)maxi |1− λi|, (29)

where λi are eigenvalues of Φ⊤(ΦΦ⊤)−1Φ; and the in-
equality Eq. (29) is based on the assumption that the map
(Dθ − I)(x) := Dθ(x) − x is ε-Lipschitz. Therefore the
spectral norm of its Jacobian ∂xDθ(x) − I is bounded by
η, which demonstrates fθ is η-Lipschitz with η = (1 +
ε)maxi |1− λi|.

It is worth noting that convergence is not yet guaranteed in
our calculation above since η is larger than 1. In SCI cases, it
is challenging to provide a theoretical guarantee. However,
we observe our models converge well in the experiments.

Experiment
Experiment Setting
Architecture Specifics For our learned network, we have
experimented with various network architectures. Specifi-
cally, for the DE-RNN model, we adopt the architecture
from BIRNAT (Cheng et al. 2020). Regarding its two-stage
(forward+backward) RNN as a whole, we iteratively feed
the output of the backward RNN back as the input of the
forward one. For the DE-GAP model, we employ different
neural networks as denoisers Dθ and utilize the real spec-
tral norm (Yoshida and Miyato 2017) for convergence pur-
poses. We found that some architectures can yield fairly
good performance while combining our proposed DEQ for
SCI. In a summary, these feasible network architectures
are Unet (Ronneberger, Fischer, and Brox 2015) with real
spectral norm (denoted as RSN-Unet), Unet with 3D con-
volutional kernels (denoted as Unet-3D), simple CNN net-
works without and with real spectral norm (denoted as CNN
and RSN-CNN, respectively), and FFDnet (Zhang, Zuo, and
Zhang 2018).

Training Details Following BIRNAT (Cheng et al. 2020),
we choose the dataset DAVIS2017 (Pont-Tuset et al. 2017)
for training. DAVIS2017 has 90 scenes and in total 6208
frames. We crop its video frames to video patch cubes with
the spatial size of 256×256×8, and obtain 26, 000 training
samples with data augmentation. Then we train the neural
network for 30 epochs. The initial learning rate is 1× 10−3

and learning rate decayed is 10% every 10 epochs. During
training, we utilize Anderson acceleration for both the for-
ward and backward pass fixed-point iterations.

Experiment Results
Comparisons on Datasets For evaluations, we test our
proposed DE-RNN and DE-GAP on six classical simula-
tion datasets including Kobe, Runner, Drop, Traffic,
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Methods Kobe Traffic Runner Drop Vehicle Aerial Average
GAP-net-AE-S9 24.20, 0.570 21.13, 0.685 29.18, 0.886 32.21, 0.907 24.19, 0.769 24.41, 0.744 25.89, 0.760

GAP-TV 26.46, 0.885 20.89, 0.715 28.52, 0.909 34.63, 0.970 24.82 0.838 25.05, 0.828 26.73, 0.858
E2E-CNN 29.02, 0.861 23.45, 0.838 34.43, 0.958 36.77, 0.974 26.40, 0.886 27.52, 0.882 29.26, 0.900

PnP-FFDnet 30.50, 0.926 24.18, 0.828 32.15, 0.933 40.70, 0.989 25.42, 0.849 25.27, 0.829 29.70, 0.892
DE-RNN 21.46, 0.697 19.47, 0.715 27.85, 0.818 30.16, 0.909 23.65, 0.832 24.83, 0.855 24.53, 0.804

DE-GAP-Unet-3D 26.76, 0.866 21.42, 0.786 30.45, 0.894 33.82, 0.963 24.94, 0.885 24.83, 0.847 27.07, 0.878
DE-GAP-RSN-CNN 27.33, 0.887 22.58, 0.829 30.74, 0.903 35.95.0.977 25.33, 0.899 25.57, 0.881 27.92, 0.896
DE-GAP-RSN-Unet 28.92, 0.939 23.68, 0.869 32.37, 0.951 36.54, 0.972 25.50, 0.905 25.67, 0.884 28.80, 0.913

DE-GAP-CNN 28.79, 0.935 23.55, 0.864 32.35, 0.950 38.14, 0.983 25.45, 0.903 25.84, 0.890 29.02, 0.921
DE-GAP-FFDnet 29.32, 0.952 24.71, 0.907 33.06, 0.971 39.89, 0.992 25.85, 0.905 26.02, 0.892 29.81, 0.936

Table 1: The results in terms of PSNR (dB) and SSIM by different algorithms on six datasets for video SCI reconstruction.

Figure 5: Comparison of selected reconstruction results with the spatial size of 256× 256× 8.

Figure 6: Comparison of selected reconstruction results of real data Water Balloon with the spatial size of 512 × 512 × 10.
Reconstruction of the real data is more difficult than simulations due to the inevitable measurement noise. As shown in this
figure, GAP-TV, DeSCI, and PnP-FFDnet (GAP) have more artifacts and distortions around margins. Our model can maintain
a clear and accurate image structure, thus leading to higher performance.
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Vehicle, and Aerial (Yuan et al. 2020) with the spa-
tial size of 256× 256 and compression ratio B=8. Quanti-
tative comparison results with other video SCI reconstruc-
tion algorithms including GAP-net (Meng, Jalali, and Yuan
2020), GAP-TV (Yuan 2016), E2E-CNN (Qiao et al. 2020)
and PnP-FFDnet (Yuan et al. 2020) on Peak Signal to Noise
Ratio (PSNR) and structured similarity (SSIM) (Wang et al.
2004) are provided in Table 1. What stands out in the table
is that our method achieves around 0.1 dB improvement in
PSNR and 0.4 in SSIM. The improvement of SSIM indi-
cates our method could reconstruct images with relative fine
structure, which is confirmed by qualitative evaluations in
Fig. 5.

To sum up, both the quantitative and qualitative compar-
isons demonstrate that our method could achieve compet-
itive performance in contrast to other algorithms. We do
notice that there are some recent work using complicated
deep networks to obtain better results than ours (Cheng et al.
2021; Wu, Zhang, and Mou 2021; Wang et al. 2021; Meng,
Jalali, and Yuan 2020; Zheng, Yang, and Yuan 2022). How-
ever, these handcraft designs of different network structures
are not necessarily converging to a stable point. By contrast,
our paper aims to provide a stable solution for SCI.

Recalling Fig. 2, where we have run existing methods and
our algorithm for iterations, while RNN and PnP fail in sta-
ble recovery, our method could converge to a fixed point and
maintain at high-level results. Reconstructed frames in Fig. 1
further verified this virtue of our proposed algorithm.

Real-world Data Reconstruction We also evaluate the
DE-GAP model on real-world dataset Water Balloon (Qiao
et al. 2020) and Chopper Wheel (Llull et al. 2013) captured
by real video SCI cameras. Note that this is more challeng-
ing due to the unavoidable noise inside the real measure-
ments, which demands the high robustness of the algorithm.

We compare the results with other algorithms including
GAP-TV (Yuan 2016), DeSCI (Liu et al. 2018) and PnP-
FFDnet (Yuan et al. 2020), as shown in Figs. 6 and 7. The
reconstruction results on real-world data demonstrate the ef-
fectiveness and generalization of our proposed method. Note
that the reconstruction results of real data are achieved by the
model trained to utilize the simulation mask, which means
that our proposed model is kind of flexible and can achieve
stable results by the virtue of the fact that our model can be
theoretically infinitely extended.

Specifically, we observe that: i) GAP-TV and DeSCI of-
ten generate a lot of artifacts and show noisy texture. ii) PnP-
FFDnet has artifacts and distortions around margins. iii) In
contrast to them, our method shows high-quality results with
clear content and structure.

Processing Time Though we equivalently realize infinite
optimization iterations with deep neural networks plugged
in to perform video SCI reconstruction, our designed meth-
ods elegantly avoid long inference time. As Table 2 shows,
our method needs a relatively short processing time in com-
parison to other algorithms including GAP-TV (Yuan 2016),
DeSCI (Liu et al. 2018), PnP-FFDnet (Yuan et al. 2020) and
RevSCI (Wang et al. 2021).

GAP-TV DeSCI PnP-FFDnet RevSCI DE-RNN DE-GAP
4.2 6180 3.0 0.19 4.68 1.90

Table 2: Average running time per measurement in seconds
by different algorithms on classical six datasets.

Figure 7: Comparison of reconstruction results of real data
Chopper Wheel with the spatial size of 256× 256× 3.

Future Work
Since DEQ under exact gradients may suffer from training
time and stability issues, we will incorporate inexact gradi-
ents (Geng et al. 2021) and fixed point correction (Bai et al.
2022) to solve these issues and improve the performance.
Our preliminary experiments found that inexact gradients
could accelerate the backward passes in training our mod-
els by roughly 1.3 ∼ 1.5×. Another direction is to integrate
DEQ with semantic analysis in SCI (Zhang et al. 2022).

Conclusion
In this paper, to solve the problems of memory requirement
and unstable recovery in existing methods, we propose deep
equilibrium models for video SCI. Fusing data-driven reg-
ularization and stable convergence in a theoretically sound
manner, we combine DEQ with existing methods and de-
sign two novel models, i.e., DE-RNN and DE-GAP. Each
equilibrium model implicitly learns a nonexpansive operator
by training the embedded neural network and analytically
computes the fixed point, thus enabling unlimited iterative
steps and infinite network depth with only a constant mem-
ory requirement in the training and inference process. Fur-
thermore, we analyze the convergence conditions for each
equilibrium model to ensure the results of our models con-
verge to equilibrium. We evaluate our proposed models us-
ing different neural networks as the implicit operator on a
variety of simulations and real datasets. In comprehensive
comparisons with existing algorithms, both quantitative and
qualitative evaluations of our results demonstrate the effec-
tiveness and stability of our proposed method.
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